1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton and Oxford (2008)
2. Anil, C., Lucas, J., Grosse, R.: Sorting out Lipschitz function approximation. In: Chaudhuri, K., Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Research, pp. 291–301, Long Beach, California, USA. PMLR (2019)
3. Arjovsky, M., Shah, A., Bengio, Y. Unitary evolution recurrent neural networks. In: International Conference on Machine Learning, pp. 1120–1128 (2016)
4. Bansal, N., Chen, X., Wang, Z.: Can we gain more from orthogonality regularizations in training deep networks? In: Advances in Neural Information Processing Systems, pp. 4261–4271 (2018)
5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)