Abstract
AbstractHarmonic Hilbert spaces on locally compact abelian groups are reproducing kernel Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of weighted$$L^2$$L2spaces on the dual group. It is known that for suitably chosen subadditive weights, every such space is a Banach algebra with respect to pointwise multiplication of functions. In this paper, we study RKHSs associated with subconvolutive functions on the dual group. Sufficient conditions are established for these spaces to be symmetric Banach$$^*$$∗-algebras with respect to pointwise multiplication and complex conjugation of functions (here referred to as RKHAs). In addition, we study aspects of the spectra and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a compact abelian groupGto have the same spectrum as the$$C^*$$C∗-algebra of continuous functions onG. We also consider one-parameter families of RKHSs associated with semigroups of self-adjoint Markov operators on$$L^2(G)$$L2(G), and show that in this setting subconvolutivity is a necessary and sufficient condition for these spaces to have RKHA structure. Finally, we establish embedding relationships between RKHAs and a class of Fourier–Wermer algebras that includes spaces of dominating mixed smoothness used in high-dimensional function approximation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献