Quantum computing for fusion energy science applications

Author:

Joseph I.1ORCID,Shi Y.1ORCID,Porter M. D.1ORCID,Castelli A. R.1ORCID,Geyko V. I.1ORCID,Graziani F. R.1ORCID,Libby S. B.1ORCID,DuBois J. L.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , P.O. Box 808, Livermore, California 94551, USA

Abstract

This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron–Frobenius evolution operator, and the Koopman–von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendixes. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave–particle interactions through the simulation of quantum maps and of wave–wave interactions important in nonlinear plasma dynamics.

Funder

Fusion Energy Sciences

Office of Defense Programs

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference217 articles.

1. The U.S. National Quantum Initiative;Quantum Sci. Technol.,2019

2. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy;Phys. Rev. Lett.,2019

3. Advances toward fieldable atom interferometers;Adv. Phys.: X,2022

4. China demonstrates quantum encryption by hosting a video call,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Mechanics for Closure of Dynamical Systems;Multiscale Modeling & Simulation;2024-02-05

2. Quantum computing perspective for electromagnetic wave propagation in cold magnetized plasmas;Physics of Plasmas;2023-12-01

3. Semiclassical theory and the Koopman-van Hove equation *;Journal of Physics A: Mathematical and Theoretical;2023-11-06

4. Quantum Algorithm for the Linear Vlasov Equation with Collisions;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Similarity-based parameter transferability in the quantum approximate optimization algorithm;Frontiers in Quantum Science and Technology;2023-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3