Investigation of the effect of graphene oxide nanoparticles on the structural and dielectric parameters in zinc oxide semiconductors

Author:

Horlu Merve,Macit Cevher Kursat,Aksakal Bunyamin,Tanyeri Burak,Biryan Fatih

Abstract

AbstractIn this study, pure and 1%, 3% and 5% doped graphene oxide (GO) reinforced zinc oxide (ZnO) nanoparticles were synthesized by sol-gel method. The aim was to improve the electrical and dielectric properties of ZnO semiconductor metal oxide used in many electronic, optoelectronic and electrochemical technologies. FE-SEM, X-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy (FT-IR), were used to show the structural and morphological properties of the synthesized ZnO and GO doped ZnO nanoparticles. Impedance analysis was used to study the dielectric properties of the produced nanoparticles. XRD analysis revealed typical peaks of nGO and ZnO nanoparticles. Through the FE-SEM and XRD analysis, it was shown that the ZnO and GO nanopowders were successfully synthesized. The results revealed that ZnO-GO nanoparticles, having good dielectric constant with loss and AC conductivity values, such materials can be a good candidate for solar cells and photovoltaic devices. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3