Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery

Author:

Chodankar Nilesh R.,Ji Su-Hyeon,Han Young-Kyu,Kim Do-Heyoung

Abstract

AbstractRechargeable alkaline batteries (RABs) have received remarkable attention in the past decade for their high energy, low cost, safe operation, facile manufacture, and eco-friendly nature. To date, expensive electrode materials and current collectors were predominantly applied for RABs, which have limited their real-world efficacy. In the present work, we propose a scalable process to utilize electronic waste (e-waste) Cu wires as a cost-effective current collector for high-energy wire-type RABs. Initially, the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion. Then, both atomic-layer-deposited NiO and NiCo-hydroxide were applied to the CuO nanowires to form a uniform dendritic-structured NiCo-hydroxide/NiO/CuO/Cu electrode. When the prepared dendritic-structured electrode was applied to the RAB, it showed excellent electrochemical features, namely high-energy-density (82.42 Wh kg−1), excellent specific capacity (219 mAh g−1), and long-term cycling stability (94% capacity retention over 5000 cycles). The presented approach and material meet the requirements of a cost-effective, abundant, and highly efficient electrode for advanced eco-friendly RABs. More importantly, the present method provides an efficient path to recycle e-waste for value-added energy storage applications.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3