Highly conductive RuO2 thin films from novel facile aqueous chemical solution deposition

Author:

Angermann MartinaORCID,Jakopic Georg,Prietl Christine,Griesser Thomas,Reichmann Klaus,Deluca Marco

Abstract

AbstractRuthenium dioxide (RuO2) thin films were synthesized by Chemical Solution Deposition (CSD) on silicon substrates using only water and acetic acid as solvents. The microstructure, phase purity, electrical and optical properties as well as the thermal stability of the thin films have been characterized. The microstructure of the thin films strongly depends on the annealing temperature: A smooth thin film was achieved at an annealing temperature of 600 °C. Higher annealing temperatures (800 °C) led to radial grain growth and an inhomogeneous thin film. A very low resistivity of 0.89 µΩm was measured for a 220 nm-thick thin film prepared at 600 °C. The resistivity of the thin films increases with temperature, which indicates metallic behavior. Phase purity of the thin films was confirmed with X-ray Diffraction (XRD) measurements, X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. Transmission and reflectivity measurements indicate that RuO2 efficiently blocks the UV-VIS and IR wavelengths. The optical constants determined via spectroscopic ellipsometry show high absorption in the near-IR region as well as a lower one in the UV-VIS region. The thermal stability was investigated by post-annealing, confirming that the thin films are stable up to 750 °C in synthetic air. Graphical Abstract

Funder

H2020 Future and Emerging Technologies

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3