The Hubble Constant
-
Published:2015-09-24
Issue:1
Volume:18
Page:
-
ISSN:2367-3613
-
Container-title:Living Reviews in Relativity
-
language:en
-
Short-container-title:Living Rev Relativ
Abstract
AbstractI review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72–74 km s−1 Mpc−1, with typical errors of 2–3 km s−1 Mpc−1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s−1 Mpc−1 and typical errors of 1–2 km s−1 Mpc−1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous)
Reference242 articles.
1. Ackermann, M. et al. (Fermi Collaboration), “The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars”, Science, 338, 1190, (2012). [DOI], [ADS], [arXiv:1211.1671]. (Cited on page 21.) 2. Ade, P. A. R. et al. (Planck Collaboration), “Planck 2013 results. XVI. Cosmological parameters”, Astron. Astrophys., 571, A16, (2013). [DOI], [ADS], [arXiv:1303.5076]. (Cited on pages 7, 30, 31, 32, 33, and 34.) 3. Alves, D. R., “A review of the distance and structure of the Large Magellanic Cloud”, New Astron. Rev., 48, 659–665, (2004). [DOI], [ADS], [astro-ph/0310673]. (Cited on page 25.) 4. Amendola, L. et al., “Cosmology and Fundamental Physics with the Euclid Satellite”, Living Rev. Relativity, 16, lrr-2013-6 (2013). [DOI], [ADS], [arXiv:1206.1225 [astro-ph.CO]]. URL (accessed 7 August 2014): http://www.livingreviews.org/lrr-2013-6. (Cited on page 19.) 5. An, D., Terndrup, D. M., Pinsonneault, M. H., Paulson, D. B., Hanson, R. B. and Stauffer, J. R., “The Distances to Open Clusters from Main-Sequence Fitting. III. Improved Accuracy with Empirically Calibrated Isochrones”, Astrophys. J., 655, 233–260, (2007). [DOI], [ADS], [astro-ph/0607549]. (Cited on page 23.)
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|