Abstract
AbstractIn this paper, we study the existence and uniqueness of the random periodic solution for a stochastic differential equation with a one-sided Lipschitz condition (also known as monotonicity condition) and the convergence of its numerical approximation via the backward Euler–Maruyama method. The existence of the random periodic solution is shown as the limit of the pull-back flows of the SDE and the discretized SDE, respectively. We establish a convergence rate of the strong error for the backward Euler–Maruyama method with order of convergence 1/2.
Funder
The Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献