Abstract
AbstractWe prove local convergence results for rerooted conditioned multi-type Galton–Watson trees. The limit objects are multitype variants of the random sin-tree constructed by Aldous (1991), and differ according to which types recur infinitely often along the backwards growing spine.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference30 articles.
1. Abraham, R., Delmas, J.-F., Guo, H.: Critical multi-type Galton-Watson trees conditioned to be large. J. Theoret. Probab. 31(2), 757–788 (2018)
2. Aldous, D.: Asymptotic fringe distributions for general families of random trees. Ann. Appl. Probab. 1(2), 228–266 (1991)
3. Athreya, K. B., Ney, P. E.: Branching processes. Springer-Verlag, New York-Heidelberg, Die Grundlehren der mathematischen Wissenschaften, Band 196 (1972)
4. Bell, J. P., Burris, S. N., Yeats, K. A.: Counting rooted trees: the universal law $$t(n)\sim C\rho ^{-n} n^{-3/2}$$. Electron. J. Combin., 13(1):Research Paper 63, 64 pp. (electronic), (2006)
5. de Raphélis, L.: Scaling limit of multitype galton-watson trees with infinitely many types. Ann. Inst. H. Poincaré Probab. Statist. 53(1), 200–225, 02 (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献