Critical Multi-type Galton–Watson Trees Conditioned to be Large

Author:

Abraham Romain,Delmas Jean-François,Guo Hongsong

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference25 articles.

1. Abraham, R., Delmas, J.-F.: Local limits of conditioned Galton–Watson trees: the condensation case. Electron. J. Probab. 19(56), 1–29 (2014)

2. Abraham, R., Delmas, J.-F.: Local limits of conditioned Galton–Watson trees: the infinite spine case. Electron. J. Probab. 19(2), 1–19 (2014)

3. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)

4. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Berlin (2006)

5. Chaumont, L., Liu, R.: Coding multitype forests: application to the law of the total population of branching forests. Trans. Am. Math. Soc. 368, 2723–2747 (2016)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinite Boltzmann Maps of the Plane;Lecture Notes in Mathematics;2023

2. Multirange percolation on oriented trees: Critical curve and limit behavior;Random Structures & Algorithms;2022-06-24

3. Simple peeling of planar maps with application to site percolation;Canadian Journal of Mathematics;2021-02-26

4. Local Convergence of Critical Random Trees and Continuous-State Branching Processes;Journal of Theoretical Probability;2021-02-08

5. Rerooting Multi-type Branching Trees: The Infinite Spine Case;Journal of Theoretical Probability;2021-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3