Abstract
Abstract
In traditional models only an order one fraction of energy is transferred from the inflaton to radiation through nonperturbative resonance production in preheating immediately after inflation, due to backreaction effects. We propose a particle production mechanism that could improve the depletion of the inflaton energy density by up to four orders of magnitude. The improvement comes from the fast perturbative decays of resonantly produced daughter particles. They act as a “spillway” to drain these daughter particles, reducing their backreaction on the inflaton and keeping the resonant production effective for a longer period. Thus we dub the scenario “spillway preheating”. We also show that the fraction of energy density remaining in the inflaton has a simple inverse power-law scaling in the scenario. In general, spillway preheating is a much more efficient energy dissipation mechanism, which may have other applications in model building for particle physics.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference69 articles.
1. L.F. Abbott, E. Farhi and M.B. Wise, Particle Production in the New Inflationary Cosmology, Phys. Lett. B 117 (1982) 29 [INSPIRE].
2. A.D. Dolgov and A.D. Linde, Baryon Asymmetry in Inflationary Universe, Phys. Lett. B 116 (1982) 329 [INSPIRE].
3. A. Albrecht, P.J. Steinhardt, M.S. Turner and F. Wilczek, Reheating an Inflationary Universe, Phys. Rev. Lett. 48 (1982) 1437 [INSPIRE].
4. J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].
5. A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [INSPIRE].
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献