The rise and fall of the Standard-Model Higgs: electroweak vacuum stability during kination

Author:

Laverda GiorgioORCID,Rubio JavierORCID

Abstract

Abstract In this paper we investigate the vacuum stability of the non-minimally coupled Standard-Model Higgs during a phase of kinetic domination following the end of inflation. The non-minimal coupling to curvature stabilises the Higgs fluctuations during inflation while driving them towards the instability scale during kination, when they can classically overcome the potential barrier separating the false electroweak vacuum from the true one at super-Planckian field values. Avoiding the instability of the Standard-Model vacuum sets an upper bound on the inflationary scale that depends both on the strength of the non-minimal interaction and on the top quark Yukawa coupling. Classical vacuum stability is guaranteed if the gravitationally-produced energy density is smaller than the height of barrier in the effective potential. Interestingly enough, thanks to the explosive particle production in the tachyonic phase, the Higgs itself can be also appointed to the role of reheaton field responsible for the onset of the hot Big Bang era, setting an additional lower bound on the inflationary scale $$ {\mathcal{H}}_{\textrm{inf}} $$ H inf ≳ 105.5 GeV. Overall, these constraints favour lower masses for the top quark, in agreement with the current measurements of the top quark pole mass. We perform our analysis semi-analytically in terms of the one-loop and three-loop running of the Standard-Model Higgs self-coupling and make use of lattice-based parametric formulas for studying the (re)heating phase derived in arXiv:2307.03774. For a specific choice of mt = 171.3 GeV we perform also an extensive numerical scanning of the parameter space via classical lattice simulations, identifying stable/unstable regions and supporting the previous analytical arguments. For this fiducial value, the heating of the Universe is achieved at temperatures in the range 10−2–109 GeV.

Publisher

Springer Science and Business Media LLC

Reference118 articles.

1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

3. Y. Tang, Vacuum Stability in the Standard Model, Mod. Phys. Lett. A 28 (2013) 1330002 [arXiv:1301.5812] [INSPIRE].

4. F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].

5. G. Hiller, T. Höhne, D.F. Litim and T. Steudtner, Vacuum Stability in the Standard Model and Beyond, arXiv:2401.08811 [INSPIRE].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. String theory and the first half of the universe;Journal of Cosmology and Astroparticle Physics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3