Convergent Bayesian global fits of 4D composite Higgs models

Author:

Carragher Ethan,Handley Will,Murnane Daniel,Stangl Peter,Su WeiORCID,White Martin,Williams Anthony G.

Abstract

Abstract Models in which the Higgs boson is a composite pseudo-Nambu-Goldstone boson offer attractive solutions to the Higgs mass naturalness problem. We consider three such models based on the minimal SO(5) → SO(4) symmetry breaking pattern, and perform convergent global fits on the models under a Bayesian framework in order to find the regions of their parameter spaces that best fit a wide range of constraints, including recent Higgs measurements. We use a novel technique to analyse the fine-tuning of the models, quantifying the tuning as the Kullback-Leibler divergence from the prior to the posterior probability on the parameter space. Each model is found to be able to satisfy all constraints at the 3σ level simultaneously. As a by-product of the fits, we analyse the collider phenomenology of our models in these viable regions. In two of the three models, we find that the ggHγγ cross section is less than ∼90% that predicted by the SM, which is already in slight tension with experiment and could potentially be ruled out in the future high-luminosity run of the LHC. In addition, the lightest fermions F arising from the new strong dynamics in these models are seen in general to lie above ∼1.1 TeV, with the FtW+ and F$$ \overline{b}{W}^{+} $$ b ¯ W + decays offering particularly promising channels for probing these models in future collider searches.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extending global fits of 4D Composite Higgs Models with partially composite leptons;Journal of High Energy Physics;2024-08-22

2. Exploring phase space with nested sampling;The European Physical Journal C;2022-08-05

3. Probing composite Higgs boson substructure at the HL-LHC;Physical Review D;2021-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3