Abstract
AbstractWe present the first application of a Nested Sampling algorithm to explore the high-dimensional phase space of particle collision events. We describe the adaptation of the algorithm, designed to perform Bayesian inference computations, to the integration of partonic scattering cross sections and the generation of individual events distributed according to the corresponding squared matrix element. As a first concrete example we consider gluon scattering processes into 3-, 4- and 5-gluon final states and compare the performance with established sampling techniques. Starting from a flat prior distribution Nested Sampling outperforms the Vegas algorithm and achieves results comparable to a dedicated multi-channel importance sampler. We outline possible approaches to combine Nested Sampling with non-flat prior distributions to further reduce the variance of integral estimates and to increase unweighting efficiencies.
Funder
Engineering and Physical Sciences Research Council
Bundesministerium für Bildung und Forschung
Royal Society
Deutsche Forschungsgemeinschaft
Science and Technology Facilities Council
H2020 Marie Sklodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献