Learning from radiation at a very high energy lepton collider

Author:

Chen Siyu,Glioti Alfredo,Rattazzi Riccardo,Ricci LorenzoORCID,Wulzer Andrea

Abstract

Abstract We study the potential of lepton collisions with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On one hand, we find that sufficiently accurate theoretical predictions require the resummed inclusion of radiation effects, which we perform at the double logarithmic order. On the other hand, we notice that short-distance physics does influence the emission of Electroweak radiation. Therefore the investigation of the radiation pattern can enhance the sensitivity to new short-distance physical laws. We illustrate these aspects by studying Effective Field Theory contact interactions in di-fermion and di-boson production, and comparing cross-section measurements that require or that exclude the emission of massive Electroweak bosons. The combination of the two types of measurements is found to enhance the sensitivity to the new interactions. Based on these results, we perform sensitivity projections to Higgs and Top Compositeness and to minimal Z′ new physics scenarios at future muon colliders.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting dark matter searches at muon colliders with machine learning: The mono-Higgs channel as a case study;Progress of Theoretical and Experimental Physics;2023-12

2. Charged resonances and MDM bound states at a multi-TeV muon collider;Journal of High Energy Physics;2023-10-20

3. Towards a muon collider;The European Physical Journal C;2023-09-26

4. LePDF: Standard Model PDFs for high-energy lepton colliders;Journal of High Energy Physics;2023-09-18

5. Going all the way in the search for WIMP dark matter at the muon collider through precision measurements;The European Physical Journal C;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3