Fast screening method to identify salinity tolerant strains of foliose Ulva species. Low salinity leads to increased organic matter of the biomass

Author:

Simon Clara,Fort Antoine,Jouanneau Diane,McHale Marcus,Sulpice Ronan

Abstract

AbstractSea lettuce (Ulva) is recognised for its potential in food, pharmaceutical, nutraceutical, biorefinery and bioremediation industries and is increasingly being cultivated. The requirements of those industries vary widely in terms of biomass composition. Ulva biomass composition and growth is known to be directly influenced by environmental factors, e.g., temperature, light, salinity, nutrient availability as well as by genetic factors and likely by microbiome composition. In order to select for the highest yielding strains in a given environment, we tested the suitability of common-garden experiments, i.e., the co-cultivation of different strains grown under shared conditions. Fifteen strains from six different foliose Ulva species were grown together under two different salinities, 35 ppt and 15 ppt. After 32 days, only U. australis strains remained at both salinities. If selection at low salinity was mostly based on survival, the selection process at seawater salinity was driven by competition, largely based on growth performance. Growth rates after a month were very similar at both salinities, suggesting the U. australis strains cope equally well in either condition. However, the composition of the biomass produced in both environments varied, with the content of all organic compounds being higher at low salinity, and the ash content being reduced in average by 66%. To summarize, this study provides an established bulk-selection protocol for efficiently screening large numbers of locally-sourced strains and highlights the potential of low salinity treatments for increased organic matter content, particularly in carbohydrates.

Funder

Science Foundation Ireland

National University Ireland, Galway

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3