Abstract
AbstractWe compute the Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces. We use the fact that the magnetic geodesic flow is totally periodic and can be reparametrized to obtain a Hamiltonian circle action. The oscillation of the Hamiltonian generating the circle action immediately yields a lower bound of the Hofer–Zehnder capacity. The upper bound is obtained from Lu’s bounds of the Hofer–Zehnder capacity using the theory of pseudo-holomorphic curves. In our case, the gradient spheres of the Hamiltonian H will give rise to the non-vanishing Gromov–Witten invariant.
Funder
Deutsche Forschungsgemeinschaft
Ruhr-Universität Bochum
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Benedetti, G., Bimmermann, J., Zehmisch, K.: Symplectic capacities of disc cotangent bundles of flat tori. arXiv:2311.07351 (2023)
2. Benedetti, G., Ritter, A.F.: Invariance of symplectic cohomology and twisted cotangent bundles over surfaces. Int. J. Math. 31(9), 2050070, 56 pp. (2020)
3. Bimmermann, J.: Hofer–Zehnder capacity of disc tangent bundles of projective spaces. arXiv:2306.11382 (2023)
4. Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mané‘s critical values. Geom. Topol. 14(3), 1765–1870 (2010)
5. Cieliebak, K., Hofer H., Latschev, J., Schlenk, F.: Quantitative symplectic geometry. arXiv:math/0506191 (2005)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献