Abstract
AbstractWe show that assuming the standard conjectures, for any smooth projective varietyXof dimensionnover an algebraically closed field, there is a constant$$c>0$$c>0such that for any positive rational numberrand any polarized endomorphismfofX, we have$$\begin{aligned} \Vert G_r \circ f \Vert \le c \deg (G_r \circ f), \end{aligned}$$‖Gr∘f‖≤cdeg(Gr∘f),where$$G_r$$Gris a correspondence ofXso that for each$$0\le i\le 2n$$0≤i≤2n, its pullback action on thei-th Weil cohomology group is the multiplication-by-$$r^i$$rimap. This inequality is known to imply the generalized Weil Riemann hypothesis and is a special case of a more general conjecture by the authors’ work Hu and Truong (A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity.arXiv:2102.04405v3, 2021).
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Ancona, G.: Standard conjectures for abelian fourfolds. Invent. Math. 223(1), 149–212 (2021)
2. Clozel, L.: Equivalence numérique et équivalence cohomologique pour les variétés abéliennes sur les corps finis. Ann. of Math. (2) 150(1), 151–163 (1999)
3. Deligne, P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)
4. Hu, F., Truong, T.T.: A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity. arXiv:2102.04405v3 (2021)
5. Hu, F.: Cohomological and numerical dynamical degrees on abelian varieties. Algebra Number Theory 13(8), 1941–1958 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献