Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae)

Author:

Luo YanORCID,Pan Bang-Zhen,Li Lu,Yang Chen-Xuan,Xu Zeng-FuORCID

Abstract

Key message Cytokinin might be an important factor to regulate floral sex at the very early stage of flower development in sacha inchi. Abstract Sacha inchi (Plukenetia volubilis, Euphorbiaceae) is characterized by having female and male flowers in a thyrse with particular differences. The mechanisms involved in the development of unisexual flowers are very poorly understood. In this study, the inflorescence and flower development of P. volubilis were investigated using light microscopy and scanning electron microscopy. We also investigated the effects of cytokinin on flower sex determination by exogenous application of 6-benzyladenine (BA) in P. volubilis. The floral development of P. volubilis was divided into eight stages, and the first morphological divergence between the male and female flowers was found to occur at stage 3. Both female and male flowers can be structurally distinguished by differences in the shape and size of the flower apex after sepal primordia initiation. There are no traces of gynoecia in male flowers or of androecia in female flowers. Exogenous application of BA effectively induced gynoecium primordia initiation and female flower development, especially at the early flower developmental stages. We propose that flower sex is determined earlier and probably occurs before flower initiation, either prior to or at inflorescence development due to the difference in the position of the female and male primordia in the inflorescence and in the time of the female and male primordia being initiated. The influence of cytokinin on female primordia during flower development in P. volubilis strongly suggests a feminization role for cytokinin in sex determination. These results indicate that cytokinin could modify the fate of the apical meristem of male flower and promote the formation of carpel primordia in P. volubilis.

Funder

National Natural Science Foundation of China

the program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3