Transcription Factor and Zeatin Co-Regulate Mixed Catkin Differentiation of Chinese Chestnut (Castanea mollissima)

Author:

Zhou Xuan1ORCID,Wang Lu1,Yin Qian1,Liu Xinghui1,Masabni Joseph2,Xiong Huan1,Yuan Deyi1,Zou Feng1ORCID

Affiliation:

1. Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China

2. Texas A & M Agri Life Research and Extension Center, 17360 Coit Rd, Dallas, TX 75252, USA

Abstract

Castanea mollissima is an important monoecious fruit crop with high economic and ecological value in China. However, its yield is restricted by an imbalanced ratio of male and female flowers for chestnut production. To address this issue, we examined the morphology of bisexual flower organs, measured the levels of endogenous hormones in the flowers, profiled gene expression related to plant hormone biosynthesis and signaling pathways and transcription factors, and investigated the effects of exogenous jasmonic acid (JA) and zeatin (ZT) hormone application on flower development in C. mollissima ‘Tanqiao’. Morphological studies indicated that the development of male and female flowers can be divided into nine and eight stages, respectively. Male flowers contained higher levels of gibberellic acid (GA3) and abscisic acid (ABA) than female flowers, whereas female flowers had higher levels of JA and ZT. The analysis of the Kyoto encyclopedia of genes and genomes (KEGG) pathways revealed that the major significant enrichment pathways of differentially expressed genes (DEGs) consisted of plant hormone signal transduction and zeatin biosynthesis. Through time-series analyses, we screened 3 genes related to jasmonic acid biosynthesis and signal transduction and 21 genes related to zeatin biosynthesis and transduction. Among these genes, only the gene family LOG, related to zeatin biosynthesis, was highly expressed in female flowers. This result indicated that LOG may be the core gene hormone family involved in regulating female flower development. However, a weighted gene co-expression network analysis (WGCNA) suggested that IDD7 was the core gene involved in regulating female flower development. The results of exogenous hormone application indicated that zeatin could greatly increase the quantity of fertile female flowers, but JA was not significant. These findings demonstrated that zeatin and transcription factors were crucial regulators in the formation of female flowers in C. mollissima.

Funder

National Key R&D Program of China

Scientific research project of Hunan Provincial Department of Education

Central Finance Forestry Science and Technology Promotion Demonstration Fund Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3