Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption

Author:

Wang Ting,Zhao Wenxin,Miao Yukun,Cui Anguo,Gao Chuanhui,Wang Chang,Yuan Liying,Tian Zhongning,Meng Alan,Li Zhenjiang,Zhang Meng

Abstract

AbstractDefect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of − 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3