Multi‐Scale Design of Metal–Organic Framework Metamaterials for Broad‐Band Microwave Absorption

Author:

Qu Ning1,Xu Guoxuan1,Liu Yekun1,He Mukun1,Xing Ruizhe1,Gu Junwei1,Kong Jie1ORCID

Affiliation:

1. MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractThe development of nanocomposite microwave absorbers is a critical strategy for tackling electromagnetic pollution. However, challenges persist regarding material stability and achieving broadband absorption. Herein, a novel multi−scale design approach for metamaterial absorbers is proposed. First, a series of bimetallic (cobalt and copper) semiconductive metal–organic framework (SC−MOF) crystals with atomically resolved structures are successfully prepared to serve as building blocks for metamaterials. By simply adjusting the concentration ratio of the two ions, the controllable preparation of crystal morphology can be achieved. This enables to precisely tune the absorption peak and bandwidth range of the SC−MOF, resulting in excellent EMW absorption performance (effective absorption bandwidth: 6.16 GHz, minimum reflection loss: −61 dB). Based on this, printable inks are further constructed by encapsulating the SC−MOF in polydimethylsiloxane and 3D‐printed multi−layered metamaterial absorbers based on woodpile porous architecture. The metamaterial absorber demonstrates a near‐perfect absorption in the microwave spectrum (with a bandwidth of 11.33 GHz), closely matching theoretical simulations. This multi−scale design approach, combining precise MOF materials construction with topological structure design, offers new insights for the development of broadband microwave absorbers.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Wiley

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3