High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites

Author:

Zhu Yingke,Shen Zhonghui,Li Yong,Chai Bin,Chen Jie,Jiang Pingkai,Huang Xingyi

Abstract

AbstractDielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications. Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability. Normally, inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current. However, how these nanofillers effect the leakage current is still unclear. Meanwhile, high dopant (> 5 vol%) is prerequisite for distinctly improved energy storage performance, which severely deteriorates the processing and mechanical property of polymer nanocomposites, hence brings high technical complication and cost. Herein, boron nitride nanosheet (BNNS) layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride (PVDF) nanocomposite. Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers, preventing the electron in PVDF from passing through inorganic layers, leading to suppressed leakage current and superior breakdown strength. Accompanied by improved Young’s modulus (from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite), significantly boosted discharged energy density (14.3 J cm−3) and charge–discharge efficiency (75%) are realized in multilayered nanocomposites, which are 340 and 300% of PVDF (4.2 J cm−3, 25%). More importantly, thus remarkably boosted energy storage performance is accomplished by marginal BNNS. This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3