Influence of curing agent modified BN with different molecular structures on the heat conduction and electrical insulation property of epoxy composites

Author:

Zhang Wang1ORCID,Zhang Tong1,Wang Qingde1,Zhao Baorui2,Cao Xiaolong1,Wang Jinkai1,Liu Haixia1,Wang Zhengdong1

Affiliation:

1. School of Mechanical and Electrical Engineering Xi'an University of Architecture and Technology Xi'an China

2. Shandong Taikai Transformer Co., Ltd Taian China

Abstract

AbstractBoron nitride (hBN) serves as an outstanding high‐performance polymer organic filler. However, its hexagonal crystal structure renders it chemically inert, thus limiting its applications. This study proposes the modification of hBN using economical amine and anhydride curing agents to reduce aggregation and enhance the heat conduction of epoxy resin. Specifically, the DETA curing agent and methyl tetrahydrophthalic anhydride (MTHPA) curing agent were grafted onto the hBN surface via ball milling and eco‐friendly water scrubbing processes. Subsequently, the modified functionalized BNNS were uniformly dispersed in epoxy resin via a wet process to form composite materials. Results indicate that both modified fillers maintain good dispersion at the epoxy interface. Compared to epoxy resin, the heat conduction of the EP/MTHPA‐BNNS composite material with 10 vol% loading increased by 212%. The EP/DETA‐BNNS composite exhibited a relative thermal conductivity enhancement of 191%. Moreover, both of materials demonstrated significantly improved thermal stability, with slightly reduced breakdown strength. Mechanical property testing revealed a maximum increase of 187.5% in fracture elongation.Highlights Comprehensive study on curing agent modified hBN High dispersion of BNNS after wet ball milling Modified BNNS improves composite interface properties The thermal conductivity increases twice under 10 wt% BNNS loading Composite materials with outstanding electrical insulation and high fracture elongation

Funder

State Key Laboratory of Electrical Insulation and Power Equipment

National Youth Science Foundation

Education Department of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3