Author:
Yang Peng,Zha Jiajia,Gao Guoyun,Zheng Long,Huang Haoxin,Xia Yunpeng,Xu Songcen,Xiong Tengfei,Zhang Zhuomin,Yang Zhengbao,Chen Ye,Ki Dong-Keun,Liou Juin J.,Liao Wugang,Tan Chaoliang
Abstract
AbstractThe lack of stable p-type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p-type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p-type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm2 V−1 s−1 at room temperature, that may lay the foundation for the future high-performance p-type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility "Image missing".
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献