Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M = Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc–Air Batteries

Author:

Chen Kai,Kim Seonghee,Je Minyeong,Choi HeechaeORCID,Shi Zhicong,Vladimir Nikola,Kim Kwang Ho,Li Oi Lun

Abstract

AbstractAs bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen–carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min−1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption–desorption mechanisms. In a practical Zn–air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g−1) and power density (101.62 mW cm−2), exceeding those of Pt/C-Ru/C (700.8 mAh g−1 and 89.16 mW cm−2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge–discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal–air batteries.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3