Design and Application of High-Density Cold Plasma Devices Based on High Curvature Spiked Tungsten Structured Electrodes

Author:

Weng Haotian1ORCID,Zhang Yaozhong2,Huang Xiaolu1,Yuan Hewei1,Xu Yang1,Li Kun1,Tang Yunhui3,Zhang Yafei1

Affiliation:

1. Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

Abstract

Advances in radar technology have driven efforts to develop effective countermeasures. Plasma is recognized as a highly effective medium for absorbing electromagnetic waves. Recent research has focused on enhancing plasma element performance. This paper achieved ultra-high-density, low-pressure cold plasma with a density of 1.15 × 1012 cm−3, surpassing similar studies by more than an order of magnitude. Tungsten electrodes with high-curvature spiked structures were invented to replace traditional iron–nickel alloy electrodes, increasing plasma density by 88.2% under the same conditions. Lightweight and cost-effective tubular and annular ultra-high-density, low-pressure cold plasma devices were developed, demonstrating exceptional performance in electromagnetic wave absorption, plasma transient antennas, and radar stealth technology. The influence of plasma on electromagnetic waves and its numerical relationship were analyzed. By measuring the radar cross-section (RCS), the reduction in radar detection rates was quantified. The results show that the ultra-high-density cold plasma devices exhibit very low intrinsic RCS values, suitable for plasma antenna applications. The array of plasma elements generates a large-area high-density low-pressure cold plasma. This plasma effectively reduces the radar cross-section (RCS) of metallic equipment in the S and C bands and shows attenuation in the X band. These effects highlight the superior characteristics of plasma technology in electronic warfare. This exploratory research lays the groundwork for further defense applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3