Author:
Zhang Ying,Zhou Chenxiao,Lin Lizhi,Pei Fengtao,Xiao Mengqi,Yang Xiaoyan,Yuan Guizhou,Zhu Cheng,Chen Yu,Chen Qi
Abstract
AbstractTo achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献