Author:
Li Hu,Zhang Xiao,Zhao Luming,Jiang Dongjie,Xu Lingling,Liu Zhuo,Wu Yuxiang,Hu Kuan,Zhang Ming-Rong,Wang Jiangxue,Fan Yubo,Li Zhou
Abstract
AbstractVarious types of energy exist everywhere around us, and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products. In this work, we proposed a hybrid energy-harvesting system (HEHS) for potential in vivo applications. The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid. These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system. This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output. Compared with any individual device, the integrated HEHS outputs a superimposed current and has a faster charging rate. Using the harvested energy, HEHS can power a calculator or a green light-emitting diode pattern. Considering the widely existed biomechanical energy and glucose molecules in the body, the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献