Multifunctional Thermochromic Dye‐Integrated Hybrid Nanogenerators for Mechanical Energy Harvesting and Real‐Time IoT Sensing

Author:

Graham Sontyana Adonijah1,Manchi Punnarao1,Paranjape Mandar Vasant1,Kurakula Anand1,Kavarthapu Venkata Siva1,Lee Jun Kyu1,Yu Jae Su1ORCID

Affiliation:

1. Department of Electronics and Information Convergence Engineering Institute for Wearable Convergence Electronics Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 446‐701 South Korea

Abstract

AbstractHybrid nanogenerators are advanced mechanical energy harvesters capable of simultaneously scavenging multiple types of energy. Additionally, thermochromic materials provide a practical and visually assessable method for real‐time temperature monitoring. In this report, a novel energy harvester and sensing patch (EHSP) is introduced, that utilizes combined piezoelectric and triboelectric effects to harvest mechanical energy efficiently. To optimize the EHSP, various energy harvester configurations are fabricated and tested, and the dielectric properties of triboelectric films are systematically investigated. These improvements are implemented to augment the overall energy harvesting capability. The thermochromic properties of the EHSP are also explored to enhance both the electrical performance and thermal responsiveness. The EHSP demonstrates the ability to generate maximum voltage and current outputs of 350 V and 20.4 µA, respectively. Moreover, it can detect temperature changes within seconds, making it suitable for both energy harvesting and sensing applications. The EHSP is tested in practical scenarios, proving its efficiency as an energy harvester and sensor for everyday human activities. Furthermore, its integration with multiple hybrid nanogenerators showcases its potential for industrial and wearable sensing applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3