Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference53 articles.
1. Zhu Y, Zhuang F, Wang J, Chen J, Shi Z, Wu W, He Q (2019) Multi-representation adaptation network for cross-domain image classification. Neural Netw 119:214–221
2. Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265
3. Liao S, Gao Y, Oto A, Shen D (2013) Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 254–261
4. Zhu Q, Du B, Yan P (2019) Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans Med Imaging 39(3):753–763
5. Zhu Q, Du B, Turkbey B, Choyke P, Yan P (2018) Exploiting interslice correlation for MRI prostate image segmentation, from recursive neural networks aspect. Complexity 2018(1):10–18
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献