A new hybrid deep learning-based phishing detection system using MCS-DNN classifier
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06717-w.pdf
Reference26 articles.
1. Sadique F, Kaul R, Badsha S, Sengupta S (2020) An automated framework for real-time phishing url detection. In: 10th annual computing and communication workshop and conference (CCWC). IEEE, pp 0335–0341. https://doi.org/10.1109/CCWC47524.2020.9031269
2. Paula Musuva MW, Getao KW, Chepken CK (2019) A new approach to modelling the effects of cognitive processing and threat detection on phishing susceptibility. Comput Hum Behav 94:154–175. https://doi.org/10.1016/j.chb.2018.12.036
3. Park G, Rayz J (2018) Ontological detection of phishing emails. In IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 2858–2863. https://doi.org/10.1109/SMC.2018.00486
4. Churi T, Sawardekar P, Pardeshi A, Vartak P (2017) A secured methodology for anti-phishing. In: International conference on innovations in information, embedded and communication systems (ICIIECS), IEEE, pp 1–4. https://doi.org/10.1109/ICIIECS.2017.8276081
5. Hassan Abutair YA, Belghith A (2017) A multi-agent case-based reasoning architecture for phishing detection. Proc Comput Sci 110:492–497. https://doi.org/10.1016/j.procs.2017.06.131
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unveiling suspicious phishing attacks: enhancing detection with an optimal feature vectorization algorithm and supervised machine learning;Frontiers in Computer Science;2024-07-02
2. DEPHIDES: Deep Learning Based Phishing Detection System;IEEE Access;2024
3. A Comprehensive Survey of Automated Website Phishing Detection Techniques: A Perspective of Artificial Intelligence and Human Behaviors;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23
4. Deep learning based phishing website identification system using CNN-LSTM classifier;Journal of Information and Optimization Sciences;2023
5. Review of the effectiveness of machine learning based phishing prevention systems;RECENT ADVANCES IN INDUSTRY 4.0 TECHNOLOGIES;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3