Deep learning based phishing website identification system using CNN-LSTM classifier

Author:

Sapkal Vinod,Gupta Praveen,Khan Aboo Bakar

Abstract

The term phishing refers to an attack that pretends to be the website of a large corporation, typically one dealing with money, such as a bank or other financial institution or an online retailer. Its primary objective is to acquire personally identifiable information from users, such as their social security numbers, credit card information, and passwords. Due to the rise of phishing attacks, various techniques have been developed in order to combat these threats. One of these is deep learning algorithms, which are capable of learning and analyzing massive datasets. Due to their capabilities, these algorithms are very useful in identifying and preventing phishing attacks. Due to the complexity of the phishing websites, many development systems have been created to detect them. Unfortunately, the output that was desired cannot be achieved by these systems, and they have a number of other flaws as well. The purpose of this paper is to propose a hybrid deep learning-based phishing detection system that is easy to put into practice. The quality of the input dataset is improved through the process of preprocessing the dataset. After that, the procedures of clustering and feature selection are carried out in order to improve the accuracy and decrease the amount of time required for the processing. The resulting features are then fed into the CNN_LSTM, which is a classification system that classifies websites that are phishing and legitimate. Proposed Hybrid deep learning models are proposed to combine the features of natural language processing (NLP) and character embedding. They can then reveal high-level connections between characters. In terms of the metric that is being used for the evaluation, the performance of the models that have been proposed is better than that of the other models.

Publisher

Taru Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3