Exploring nested ensemble learners using overproduction and choose approach for churn prediction in telecom industry
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-018-3678-8.pdf
Reference60 articles.
1. Ali S, Majid A (2015) Can-evo-ens: classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences. J Biomed Inf 54:256–269
2. Amin A, Anwar S, Adnan A, Nawaz M, Alawfi K, Hussain A, Huang K (2017) Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing 237:242–254
3. Athanasopoulos G, Song H, Sun JA (2017) Bagging in tourism demand modeling and forecasting. J Travel Res. https://doi.org/10.1177/0047287516682871
4. Azeem M, Usman M, Fong A (2017) A churn prediction model for prepaid customers in telecom using fuzzy classifiers. Telecommun Syst 66(4):603–614
5. Basiri J, Taghiyareh F, Moshiri B (2010) A hybrid approach to predict churn. In: Services computing conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, pp 485–491
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An analysis on classification models for customer churn prediction;Cogent Engineering;2024-07-17
2. The Impact of SMOTE and ADASYN on Random Forest and Advanced Gradient Boosting Techniques in Telecom Customer Churn Prediction;2024 10th International Conference on Web Research (ICWR);2024-04-24
3. Factors, Predictability, and Explainability of Mobile Telephony Customer Departure in Telecommunications Companies: A Systematic Review of the Literature;IEEE Access;2024
4. Predict customer churn using combination deep learning networks model;Neural Computing and Applications;2023-12-21
5. Efficient Brain Tumor Classification on Resource-Constrained Devices Using Stacking Ensemble and RadImageNet Pretrained Models;2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet);2023-12-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3