GUASOM: an adaptive visualization tool for unsupervised clustering in spectrophotometric astronomical surveys

Author:

Álvarez M. A.ORCID,Dafonte C.ORCID,Manteiga M.ORCID,Garabato D.ORCID,Santoveña R.ORCID

Abstract

AbstractWe present an adaptive visualization tool for unsupervised classification of astronomical objects in a Big Data context such as the one found in the increasingly popular large spectrophotometric sky surveys. This tool is based on an artificial intelligence technique, Kohonen’s self-organizing maps, and our goal is to facilitate the analysis work of the experts by means of oriented domain visualizations, which is impossible to achieve by using a generic tool. We designed a client-server that handles the data treatment and computational tasks to give responses as quickly as possible, and we used JavaScript Object Notation to pack the data between server and client. We optimized, parallelized, and evenly distributed the necessary calculations in a cluster of machines. By applying our clustering tool to several databases, we demonstrated the main advantages of an unsupervised approach: the classification is not based on pre-established models, thus allowing the “natural classes” present in the sample to be discovered, and it is suited to isolate atypical cases, with the important potential for discovery that this entails. Gaia Utility for the Analysis of self-organizing maps is an analysis tool that has been developed in the context of the Data Processing and Analysis Consortium, which processes and analyzes the observations made by ESA’s Gaia satellite (European Space Agency) and prepares the mission archive that is presented to the international community in sequential periodic publications. Our tool is useful not only in the context of the Gaia mission, but also allows segmenting the information present in any other massive spectroscopic or spectrophotometric database.

Funder

Xunta de Galicia

Ministerio de Ciencia, Innovación y Universidades

Universidade da Coruña

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3