Reviving autoencoder pretraining

Author:

Xie You,Thuerey Nils

Abstract

AbstractThe pressing need for pretraining algorithms has been diminished by numerous advances in terms of regularization, architectures, and optimizers. Despite this trend, we re-visit the classic idea of unsupervised autoencoder pretraining and propose a modified variant that relies on a full reverse pass trained in conjunction with a given training task. This yields networks that are as-invertible-as-possible and share mutual information across all constrained layers. We additionally establish links between singular value decomposition and pretraining and show how it can be leveraged for gaining insights about the learned structures. Most importantly, we demonstrate that our approach yields an improved performance for a wide variety of relevant learning and transfer tasks ranging from fully connected networks over residual neural networks to generative adversarial networks. Our results demonstrate that unsupervised pretraining has not lost its practical relevance in today’s deep learning environment.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference89 articles.

1. Alberti M, Seuret M, Ingold R, et al (2017) A pitfall of unsupervised pre-training. arXiv preprint arXiv:1703.04332

2. Ardizzone L, Kruse J, Wirkert S, et al (2018) Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730

3. Bansal N, Chen X, Wang Z (2018) Can we gain more from orthogonality regularizations in training deep cnns? In: Advances in Neural Information Processing Systems, Curran Associates Inc., pp 4266–4276

4. Bengio Y, Lamblin P, Popovici D, et al (2007) Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp 153–160

5. Cai TT, Ma Z, Wu Y (2013) Sparse pca: optimal rates and adaptive estimation. Ann Stat 41(6):3074–3110

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-supervised learning for classifying paranasal anomalies in the maxillary sinus;International Journal of Computer Assisted Radiology and Surgery;2024-06-08

2. Interaction-Driven Active 3D Reconstruction with Object Interiors;ACM Transactions on Graphics;2023-12-05

3. Multimodal Image Synthesis and Editing: The Generative AI Era;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

4. CROSSFIRE: Camera Relocalization On Self-Supervised Features from an Implicit Representation;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. NEnv: Neural Environment Maps for Global Illumination;Computer Graphics Forum;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3