Interaction-Driven Active 3D Reconstruction with Object Interiors

Author:

Yan Zihao1,Su Fubao1,Wang Mingyang1,Hu Ruizhen1,Zhang Hao2,Huang Hui1

Affiliation:

1. Shenzhen University, China

2. Simon Fraser University, Canada

Abstract

We introduce an active 3D reconstruction method which integrates visual perception, robot-object interaction , and 3D scanning to recover both the exterior and interior , i.e., unexposed, geometries of a target 3D object. Unlike other works in active vision which focus on optimizing camera viewpoints to better investigate the environment, the primary feature of our reconstruction is an analysis of the interactability of various parts of the target object and the ensuing part manipulation by a robot to enable scanning of occluded regions. As a result, an understanding of part articulations of the target object is obtained on top of complete geometry acquisition. Our method operates fully automatically by a Fetch robot with built-in RGBD sensors. It iterates between interaction analysis and interaction-driven reconstruction, scanning and reconstructing detected moveable parts one at a time, where both the articulated part detection and mesh reconstruction are carried out by neural networks. In the final step, all the remaining, non-articulated parts, including all the interior structures that had been exposed by prior part manipulations and subsequently scanned, are reconstructed to complete the acquisition. We demonstrate the performance of our method via qualitative and quantitative evaluation, ablation studies, comparisons to alternatives, as well as experiments in a real environment.

Funder

NSFC

DEGP Innovation Team

Shenzhen Science and Technology Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference37 articles.

1. Active vision

2. A Survey of Surface Reconstruction from Point Clouds

3. Angel X. Chang , Thomas Funkhouser , Leonidas Guibas , Pat Hanrahan , Qixing Huang , Zimo Li , Silvio Savarese , Manolis Savva , Shuran Song , Hao Su , Jianxiong Xiao , Li Yi , and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012 [cs] ( 2015 ). Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012 [cs] (2015).

4. Neural dual contouring

5. Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape modeling. 5939--5948. Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape modeling. 5939--5948.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3