Region-based feature enhancement using channel-wise attention for classification of breast histopathological images

Author:

Rashmi R.,Prasad Keerthana,Udupa Chethana Babu K.

Abstract

AbstractBreast histopathological image analysis at 400x magnification is essential for the determination of malignant breast tumours. But manual analysis of these images is tedious, subjective, error-prone and requires domain knowledge. To this end, computer-aided tools are gaining much attention in the recent past as it aids pathologists and save time. Furthermore, advances in computational power have leveraged the usage of computer tools. Yet, usage of computer-aided tools to analyse these images is challenging due to various reasons such as heterogeneity of malignant tumours, colour variations and presence of artefacts. Moreover, these images are captured at high resolutions which pose a major challenge to designing deep learning models as it demands high computational requirements. In this context, the present work proposes a new approach to efficiently and effectively extract features from these high-resolution images. In addition, at 400x magnification, the characteristics and structure of nuclei play a prominent role in the decision of malignancy. In this regard, the study introduces a novel CNN architecture called as CWA-Net that uses a colour channel attention module to enhance the features of the potential regions of interest such as nuclei. The developed model is qualitatively and quantitatively evaluated on private and public datasets and achieved an accuracy of 0.95% and 0.96%, respectively. The experimental evaluation demonstrates that the proposed method outperforms state-of-the-art methods on both datasets.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AFINITI: attention-aware feature integration for nuclei instance segmentation and type identification;Neural Computing and Applications;2024-07-25

2. Research on Breast Lesion Localization and Diagnosis Based on Knowledge-Driven and Data-Driven Approach;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

3. A Critical Analysis and Classification of Breast Cancer Using Histopathology Images;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

4. Efficient breast cancer diagnosis using multi‐level progressive feature aggregation based deep transfer learning system;International Journal of Imaging Systems and Technology;2024-03-29

5. A Semi-Supervised Learning Approach for Tissue Semantic Segmentation in Whole Slide Images;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3