Abstract
AbstractRoboCup is one of the major global AI events, gathering hundreds of teams from the world’s best universities to compete in various tasks ranging from soccer to home assistance and rescue. The commonality of these three seemingly dissimilar tasks is that in order to perform well, the robot needs to excel at the all major AI tasks: perception, control, navigation, strategy and planning. In this work, we focus on the first of these by presenting what is—to our knowledge—the first fully neural vision system for the Nao robot soccer. This is a challenging task, mainly due to the limited computational capabilities of the Nao robot. In this paper, we propose two novel neural network architectures for semantic segmentation and object detection that ensure low-cost inference, while improving accuracy by exploiting the properties of the environment. These models use synthetic transfer learning to be able to learn from a low number of hand-labeled images. The experiments show that our models outperform state-of-the-art methods such as Tiny YOLO at a fraction of the cost.
Funder
Budapest University of Technology and Economics
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献