Modeling of electricity demand forecast for power system
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-019-04153-5.pdf
Reference49 articles.
1. Fan S, Chen LN (2006) Short-term load forecasting based on an adaptive hybrid method. IEEE Trans Power Syst 21:392–401
2. Sheikhan M, Mohammadi N (2013) Time series prediction using PSO-optimized neural network and hybrid feature selection algorithm for IEEE load data. Neural Comput Appl 23(3–4):1185–1194
3. Ying LC, Pan MC (2008) Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers Manag 49(2):205–211
4. Pappas SS, Ekonomou L, Karamousantas DC, Chatzarakis GE, Katsikas SK, Liatsis P (2008) Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models. Energy 33(9):1353–1360
5. Fang TT, Lahdelma R (2016) Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system. Appl Energy 179:544–552
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A combined model using secondary decomposition for crude oil futures price and volatility forecasting: Analysis based on comparison and ablation experiments;Expert Systems with Applications;2024-10
2. Short-term Power Load Forecasting Based on TCN-BiLSTM-Attention and Multi-feature Fusion;Arabian Journal for Science and Engineering;2024-07-31
3. Multi-decomposition in deep learning models for futures price prediction;Expert Systems with Applications;2024-07
4. Hybrid Metaheuristic Algorithms for Optimization of Countrywide Primary Energy: Analysing Estimation and Year-Ahead Prediction;Energies;2024-04-02
5. Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability;International Journal of Renewable Energy Development;2024-02-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3