Environment modeling and localization from datasets of omnidirectional scenes using machine learning techniques

Author:

Cebollada SergioORCID,Payá Luis,Peidró Adrián,Mayol Walterio,Reinoso Oscar

Abstract

AbstractThis work presents a framework to create a visual model of the environment which can be used to estimate the position of a mobile robot by means of artificial intelligence techniques. The proposed framework retrieves the structure of the environment from a dataset composed of omnidirectional images captured along it. These images are described by means of global-appearance approaches. The information is arranged in two layers, with different levels of granularity. The first layer is obtained by means of classifiers and the second layer is composed of a set of data fitting neural networks. Subsequently, the model is used to estimate the position of the robot, in a hierarchical fashion, by comparing the image captured from the unknown position with the information in the model. Throughout this work, five classifiers are evaluated (Naïve Bayes, SVM, random forest, linear discriminant classifier and a classifier based on a shallow neural network) along with three different global-appearance descriptors (HOG, gist, and a descriptor calculated from an intermediate layer of a pre-trained CNN). The experiments have been tackled with some publicly available datasets of omnidirectional images captured indoors with the presence of dynamic changes. Several parameters are used to assess the efficiency of the proposal: the ability of the algorithm to estimate coarsely the position (hit ratio), the average error (cm) and the necessary computing time. The results prove the efficiency of the framework to model the environment and localize the robot from the knowledge extracted from a set of omnidirectional images with the proposed artificial intelligence techniques.

Funder

Ministerio de Ciencia e Innovación

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Universidad Miguel Hernández

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3