Evaluating the performance of meta-heuristic algorithms on CEC 2021 benchmark problems

Author:

Mohamed Ali WagdyORCID,Sallam Karam M.,Agrawal Prachi,Hadi Anas A.,Mohamed Ali Khater

Abstract

AbstractTo develop new meta-heuristic algorithms and evaluate on the benchmark functions is the most challenging task. In this paper, performance of the various developed meta-heuristic algorithms are evaluated on the recently developed CEC 2021 benchmark functions. The objective functions are parametrized by inclusion of the operators, such as bias, shift and rotation. The different combinations of the binary operators are applied to the objective functions which leads to the CEC2021 benchmark functions. Therefore, different meta-heuristic algorithms are considered which solve the benchmark functions with different dimensions. The performance of some basic, advanced meta-heuristics algorithms and the algorithms that participated in the CEC2021 competition have been experimentally investigated and many observations, recommendations, conclusions have been reached. The experimental results show the performance of meta-heuristic algorithms on the different combinations of binary parameterized operators.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference65 articles.

1. Michalewicz Z, Dasgupta D, Le Riche RG, Schoenauer M (1996) Evolutionary algorithms for constrained engineering problems. Comput Ind Eng 30(4):851–870

2. Gusel L, Rudolf R, Brezocnik M (2015) Genetic based approach to predicting the elongation of drawn alloy. Int J Simul Modell 14(1):39–47

3. Zhang J, Zhan Z-H, Lin Y, Chen N, Gong Y-J, Zhong J-H, Chung HS, Li Y, Shi Y-H (2011) Evolutionary computation meets machine learning: a survey. IEEE Comput Intell Mag 6(4):68–75

4. Collange G, Delattre N, Hansen N, Quinquis I, Schoenauer M (2010) Multidisciplinary optimization in the design of future space launchers

5. Mora AM, Squillero G (2015) Applications of evolutionary computation. In: Proceedings 18th European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8-10, 2015,. Springer, vol. 9028

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3