Implementation of Accurate Parameter Identification for Proton Exchange Membrane Fuel Cells and Photovoltaic Cells Based on Improved Honey Badger Algorithm

Author:

Yu Wei-Lun12,Wen Chen-Kai3,Liu En-Jui3ORCID,Chang Jen-Yuan1ORCID

Affiliation:

1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

2. Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan

3. Department of Green Energy and Information Technology, National Taitung University, Taitung 95092, Taiwan

Abstract

Predicting the system efficiency of green energy and developing forward-looking power technologies are key points to accelerating the global energy transition. This research focuses on optimizing the parameters of proton exchange membrane fuel cells (PEMFCs) and photovoltaic (PV) cells using the honey badger algorithm (HBA), a swarm intelligence algorithm, to accurately present the performance characteristics and efficiency of the systems. Although the HBA has a fast search speed, it was found that the algorithm’s search stability is relatively low. Therefore, this study also enhances the HBA’s global search capability through the rapid iterative characteristics of spiral search. This method will effectively expand the algorithm’s functional search range in a multidimensional and complex solution space. Additionally, the introduction of a sigmoid function will smoothen the algorithm’s exploration and exploitation mechanisms. To test the robustness of the proposed methodology, an extensive test was conducted using the CEC’17 benchmark functions set and real-life applications of PEMFC and PV cells. The results of the aforementioned test proved that with regard to the optimization of PEMFC and PV cell parameters, the improved HBA is significantly advantageous to the original in terms of both solving capability and speed. The results of this research study not only make definite progress in the field of bio-inspired computing but, more importantly, provide a rapid and accurate method for predicting the maximum power point for fuel cells and photovoltaic cells, offering a more efficient and intelligent solution for green energy.

Funder

Industrial Technology Research Institute of Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3