Enhanced multi-level features for very high resolution remote sensing scene classification
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s00521-024-09446-y.pdf
Reference40 articles.
1. Dutta S, Das M (2023) Remote sensing scene classification under scarcity of labelled samples-a survey of the state-of-the-arts. Comput Geosci 171:105295. https://doi.org/10.1016/j.cageo.2022.105295
2. Wang D, Yang R, Zhang Z, Liu H, Tan J, Li S, Yang X, Wang X, Tang K, Qiao Y et al (2023) P-swin: parallel swin transformer multi-scale semantic segmentation network for land cover classification. Comput Geosci 175:105340
3. Ouma YO, Omai L, et al. (2023) Flood susceptibility mapping using image-based 2d-CNN deep learning: Overview and case study application using multiparametric spatial data in data-scarce urban environments. Int J Intell Syst. https://doi.org/10.1155/2023/5672401
4. Shen Y, Yu R, Shu N, Qin J, Wei M, et al. (2023) Hla-hod: joint high-low adaptation for object detection in hazy weather conditions. Int J Intell Syst 2023
5. Sitaula C, Xiang Y, Aryal S, Lu X (2021) Scene image representation by foreground, background and hybrid features. Expert Syst Appl 182:115285
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A rotation-invariant horizontal vertical pooled module for remote sensing image representation;Neural Computing and Applications;2024-07-30
2. EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images;Neural Computing and Applications;2024-07-24
3. SCECNet: self-correction feature enhancement fusion network for remote sensing scene classification;Earth Science Informatics;2024-07-13
4. Remote Sensing Image Scene Classification Based on an Enhanced Attention Module;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15
5. Enhanced multi-level features for very high resolution remote sensing scene classification;Neural Computing and Applications;2024-02-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3