Best-response planning for urban fleet coordination

Author:

Martí PasqualORCID,Jordán Jaume,Julian Vicente

Abstract

AbstractThe modeling of fleet vehicles as self-interested agents brings a realistic perspective to open fleet transportation research. This feature allows us to model the fleet operation from a non-cooperative point of view. In this work, we study parcel delivery in a city with limited resources (roads and charging stations). We designed and implemented a system composed of a multi-agent planner and a game-theoretic coordination algorithm: a Best-Response Fleet Planner. The system allows for the self-organization of the transportation system by coordinating a fleet of self-interested electric vehicles. The system’s operation is optimized together with resource usage while preserving the agents’ private interests, allowing each agent to plan its actions. The results show that our system has higher scalability than similar approaches, allowing it to function for a considerable number of agents in settings that feature congestion and conflicts. Additionally, overall solution quality is improved compared to other coordination systems, reducing congestion and avoiding unnecessary waiting times.

Funder

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Ministerio de Ciencia e Innovación

Universitat Politècnica de València

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference30 articles.

1. Rao Z et al (2022) Machine learning enabled high-entropy alloy discovery. Science 378(6615):78–85

2. Chen Y, Lu C, Yan J, Feng J, Sareh P (2022) Intelligent computational design of scalene-faceted flat-foldable tessellations. J Comput Des Eng 9(5):1765–1774

3. Railsback SF, Grimm V (2019) Agent-based and individual-based modeling: a practical introduction. Princeton University Press, Princeton

4. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

5. Jordán J, Palanca J, Martí P, Julian V (2022) Electric vehicle charging stations emplacement using genetic algorithms and agent-based simulation. Expert Syst Appl 197:116739

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Demand-Responsive Transportation for Rural and Interurban Mobility;International Journal of Interactive Multimedia and Artificial Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3