Machine learning–enabled high-entropy alloy discovery

Author:

Rao Ziyuan1ORCID,Tung Po-Yen12ORCID,Xie Ruiwen3ORCID,Wei Ye1ORCID,Zhang Hongbin3ORCID,Ferrari Alberto4ORCID,Klaver T.P.C.4,Körmann Fritz14ORCID,Sukumar Prithiv Thoudden1ORCID,Kwiatkowski da Silva Alisson1ORCID,Chen Yao15ORCID,Li Zhiming16ORCID,Ponge Dirk1ORCID,Neugebauer Jörg1ORCID,Gutfleisch Oliver13,Bauer Stefan7ORCID,Raabe Dierk1ORCID

Affiliation:

1. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.

2. Department of Earth Sciences, University of Cambridge, Cambridge, UK.

3. Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.

4. Materials Science and Engineering, Delft University of Technology, Delft, Netherlands.

5. School of Civil Engineering, Southeast University, Nanjing, China.

6. School of Materials Science and Engineering, Central South University, Changsha, China.

7. KTH Royal Institute of Technology, Stockholm, Sweden.

Abstract

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10 −6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3