The experimental study of the effectiveness of Kohonen maps and autoassociative neural networks in the qualitative analysis of multidimensional data by the example of real data describing coal susceptibility to fluidal gasification

Author:

Jamróz DariuszORCID

Abstract

AbstractThe qualitative analysis of multidimensional data using their visualization allows to observe some characteristics of data in a way which is the most natural for a human, through the sense of sight. Thanks to such an approach, some characteristics of the analyzed data are simply visible. This allows to avoid using often complex algorithms allowing to examine specific data properties. Visualization of multidimensional data consists in using the representation transforming a multidimensional space into a two-dimensional space representing a computer screen. The important information which can be obtained in this way is the possibility to separate points belonging to different classes in the multidimensional space. Such information can be directly obtained if images of points belonging to different classes occupy other areas of the picture presenting these data. The paper presents the effectiveness of the qualitative analysis of multidimensional data conducted in this way through their visualization with the application of Kohonen maps and autoassociative neural networks. The obtained results were compared with results obtained using the perspective-based observational tunnels method, PCA, multidimensional scaling and relevance maps. Effectiveness tests of the above methods were performed using real seven-dimensional data describing coal samples in terms of their susceptibility to fluidal gasification. The methods’ effectiveness was compared using the criterion for the readability of the multidimensional visualization results, introduced in earlier papers.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3