The stochastic aeroelastic response analysis of helicopter rotors using deep and shallow machine learning

Author:

Chatterjee Tanmoy,Essien Aniekan,Ganguli Ranjan,Friswell Michael I.

Abstract

AbstractThis paper addresses the influence of manufacturing variability of a helicopter rotor blade on its aeroelastic responses. An aeroelastic analysis using finite elements in spatial and temporal domains is used to compute the helicopter rotor frequencies, vibratory hub loads, power required and stability in forward flight. The novelty of the work lies in the application of advanced data-driven machine learning (ML) techniques, such as convolution neural networks (CNN), multi-layer perceptron (MLP), random forests, support vector machines and adaptive Gaussian process (GP) for capturing the nonlinear responses of these complex spatio-temporal models to develop an efficient physics-informed ML framework for stochastic rotor analysis. Thus, the work is of practical significance as (i) it accounts for manufacturing uncertainties, (ii) accurately quantifies their effects on nonlinear response of rotor blade and (iii) makes the computationally expensive simulations viable by the use of ML. A rigorous performance assessment of the aforementioned approaches is presented by demonstrating validation on the training dataset and prediction on the test dataset. The contribution of the study lies in the following findings: (i) The uncertainty in composite material and geometric properties can lead to significant variations in the rotor aeroelastic responses and thereby highlighting that the consideration of manufacturing variability in analyzing helicopter rotors is crucial for assessing their behaviour in real-life scenarios. (ii) Precisely, the substantial effect of uncertainty has been observed on the six vibratory hub loads and the damping with the highest impact on the yawing hub moment. Therefore, sufficient factor of safety should be considered in the design to alleviate the effects of perturbation in the simulation results. (iii) Although advanced ML techniques are harder to train, the optimal model configuration is capable of approximating the nonlinear response trends accurately. GP and CNN followed by MLP achieved satisfactory performance. Excellent accuracy achieved by the above ML techniques demonstrates their potential for application in the optimization of rotors under uncertainty.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference56 articles.

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, others GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/

2. Adamson L, Fichera S, Mottershead J (2020) Aeroelastic stability analysis using stochastic structural modifications. J Sound Vib 477:115333

3. Batrakov A, Kusyumov A, Mikhailov S, Barakos G (2018) Aerodynamic optimization of helicopter rear fuselage. Aerosp Sci Technol 77:704–712

4. Bengio Y, Lamblin P, Popovici D, Larochelle H et al (2007) Greedy layer-wise training of deep networks. Adv Neural Inform Process Syst 19:153

5. Beran P, Stanford B, Schrock C (2017) Uncertainty quantification in aeroelasticity. Ann Rev Fluid Mech 49:361–386

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3