Aeroelasticity Model for Highly Flexible Aircraft Based on the Vortex Lattice Method

Author:

Dagilis Mindaugas1ORCID,Kilikevičius Sigitas1ORCID

Affiliation:

1. Department of Transport Engineering, Kaunas University of Technology, Studentu 56, 51424 Kaunas, Lithuania

Abstract

With the increasing use of composite materials in aviation, structural aircraft design often becomes limited by stiffness, rather than strength. As a consequence, aeroelastic analysis becomes more important to optimize both aircraft structures and control algorithms. A low computational cost aeroelasticity model based on VLM and rigid-body dynamics is proposed in this work. UAV flight testing is performed to evaluate the accuracy of the proposed model. Two flight sections are chosen to be modeled based on recorded aerodynamic surface control data. The calculated accelerations are compared with recorded flight data. It is found that the proposed model adequately captures the general flight profile, with acceleration peak errors between −6.2% and +8.4%. The average relative error during the entire flight section is 39% to 44%, mainly caused by rebounds during the beginning and end of pull-up maneuvers. The model could provide useful results for the initial phases of aircraft control law design when comparing different control algorithms.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3