Image fairness in deep learning: problems, models, and challenges

Author:

Tian HuanORCID,Zhu TianqingORCID,Liu Wei,Zhou Wanlei

Abstract

AbstractIn recent years, it has been revealed that machine learning models can produce discriminatory predictions. Hence, fairness protection has come to play a pivotal role in machine learning. In the past, most studies on fairness protection have used traditional machine learning methods to enforce fairness. However, these studies focus on low dimensional inputs, such as numerical inputs, whereas more recent deep learning technologies have encouraged fairness protection with image inputs through deep model methods. These approaches involve various object functions and structural designs that break the spurious correlations between targets and sensitive features. With these connections broken, we are left with fairer predictions. To better understand the proposed methods and encourage further development in the field, this paper summarizes fairness protection methods in terms of three aspects: the problem settings, the models, and the challenges. Through this survey, we hope to reveal research trends in the field, discover the fundamentals of enforcing fairness, and summarize the main challenges to producing fairer models.

Funder

Australian Research Council

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient DNN-Powered Software with Fair Sparse Models;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Fairness in Large Language Models: A Taxonomic Survey;ACM SIGKDD Explorations Newsletter;2024-07-24

3. LLM-Guided Counterfactual Data Generation for Fairer AI;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

4. Drop the shortcuts: image augmentation improves fairness and decreases AI detection of race and other demographics from medical images;eBioMedicine;2024-04

5. Explainable deep learning in plant phenotyping;Frontiers in Artificial Intelligence;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3